Homework 3, due 9/16

1. Suppose that $a, b \in \mathbf{C}$, and $|a|<r<|b|$. Show that

$$
\int_{\gamma} \frac{d z}{(z-a)(z-b)}=\frac{2 \pi i}{a-b}
$$

where $\gamma(t)=r e^{2 \pi i t}, t \in[0,1]$.
2. Suppose that $f: \mathbf{C} \rightarrow \mathbf{C}$ is holomorphic, and there are constants $A, B, n>$ 0 such that $|f(z)| \leq A|z|^{n}+B$ for all $z \in \mathbf{C}$. Prove that f is a polynomial.
3. Prove that if $N>0$ is an integer and f is holomorphic on $D(0,2)$ with

$$
\left|f^{(N)}(0)\right|=N!\sup \{|f(z)|:|z|=1\}
$$

then $f(z)=c z^{N}$ for some $c \in \mathbf{C}$.
4. Suppose that $f, g: \mathbf{C} \rightarrow \mathbf{C}$ are holomorphic, and $|f(z)| \leq|g(z)|$ for all $z \in \mathbf{C}$. Prove that $f=c g$ for some $c \in \mathbf{C}$.
5. Suppose that f is holomorphic on the disk $D(0,2)$. In this problem we will give two different proofs of Cauchy's inequality in the form that there is a constant $C>0$ such that

$$
\left|f^{\prime}(0)\right| \leq C \sup \{|f(z)|:|z|=1\}
$$

(a) Prove the inequality using the maximum principle, by showing that for a suitable cutoff function $\eta: D(0,1) \rightarrow \mathbf{R}$ vanishing on the boundary, and a suitable constant $D>0$ we have

$$
\Delta\left(\eta^{2}\left|f^{\prime}\right|^{2}+D|f|^{2}\right) \geq 0
$$

(b) Prove the inequality using Liouville's theorem and an argument by contradiction: if no suitable C were to exist, then we would have a sequence of holomorphic functions f_{k} on $D(0,2)$ with $\sup \left\{\left|f_{k}(z)\right|\right.$: $|z|=1\} \leq 1$ and $\left|f_{k}^{\prime}(0)\right|=k$. Use these f_{k} to construct a bounded, non-constant holomorphic function on \mathbf{C}.
6. Suppose that $f_{n}: \mathbf{C} \rightarrow \mathbf{C}$ are holomorphic functions with only real zeros, and that $f_{n} \rightarrow f$ locally uniformly on \mathbf{C}. Show that f has only real zeros, unless f is identically zero.
7. Suppose that $f(z)=\sum_{n \geq 0} c_{n} z^{n}$ defines a holomorphic function on $D(0,1)$, such that $f(z) \in \mathbf{R}$ for all $z \in D(0,1) \cap \mathbf{R}$. Show that $c_{n} \in \mathbf{R}$ for all n.

